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Two-point closure strategy in the mapping closure approximation approach
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A two-point closure strategy in mapping closure approximatitCA) approach is developed for the
evolution of the probability density functiaf®DF) of a scalar advected by stochastic velocity fields. The MCA
approach is based on multipoint statistics. We formulate a MCA modeled system using the one-point PDFs and
two-point correlations. The MCA models can describe both the evolution of the PDF shape and the rate at
which the PDF evolves.
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Scalar turbulence exhibits interplays of coherent strucproportionality between the scalar time scales and the turbu-
tures and random fluctuations over a broad range of spatidénce time scalef21]. Moreover, they exclude the effects of
and temporal scales. This feature necessitates a probabiliséhemical reaction on the time scales of scalar evolution. The
description of the scalar dynamics, which can be achieve¢ghapping closure approach of time-dependent reference fields
comprehensively by using probability density functions[g] can provide the time scale externally, which highlights an
(PDFs. Therefore, the challenge is to obtain the scalar PDFgittack line to this problem.

[1-4]. Generally, the evolution of a scalar is governed by We develop here a mapping closure approximation
three dynamical processes: advection, diffusion, and reagMCA) approach for the time scale of scalar evolution. In the
tion. In a PDF approacf¥], the advection and reaction can classic mapping closure approaf$ 7], the mapping func-

be treated exactly but the effect of molecular diffusion has tajon is constructed at the level of one-point PDFs. It is not
be modeled. It has been sho# that the effect of molecu- able to provide the information on two-point statistics, such
lar diffusion can be expressed as conditional dissipation rategs the time scales. In the MCA approach, the mapping func-
or conditional diffusions. The currently used models for thetions are constructed at the levels of multipoint statistics. The
conditional dissipation rates and conditional diffusid®$  mapping function based on the two-point correlations could
have resisted deduction from the fundamental equations anstovide the necessary information on time scales.

are unable to yield satisfactory results for the basic test cases We consider the simple case of a reactive scalar advected
of decaying scalars in isotropic turbulence, although theyy a stochastic velocity field

have achieved some success in a variety of individual cases.

The .recently devgloped mapping clqs_ure appr.oﬁic'#llﬂ Ie +U-Ve=TV20+Q(e), (1)
provides a deductive method for conditional dissipation rates at

and conditional diffusions, and the models obtained can suc- o L .
cessfully describe the shape relaxation of the scalar PD¥/N€re the velocity fieldi is incompressible, homogeneous,

from an initial doubles distribution to a Gaussian one. How- and isotropicT”is a molecular diffusivity an@(¢) mimics a
ever, the mapping closure approach is not able to provide th@Ne-species chemical reaction. o

rate at which the scalar evolves. The evolution rate has to be N the MCA approach, a surrogate field is introduced by
modeled. Therefore, the mapping closure approach is ndf€ mapping of a known random field

closed. In this paper, we will address this problem. s -

The evolution rate of scalar is a key quantity in modeling @000 = X000, 8], @
turbulent mixing for both conserved and reactive scalardere, the known random fielé(x,t) is taken as a Gaussian
[12]. It specifies the characteristic time scale of scalar evoreference field. Its one-point and two-point joint PDFs are
lution. It has been shown that the decay rate of scalar dedefined by
pends on the relative length scale ratio of the initial scalar )
and velocity field413-17, and recently, the asymptotic de- 9u(7) = i_exp[— l], (3)
cay of scalar turbulence has been extensively studied Nz 2
[18—2Q. Nearly all existing models for scalar mixing, rang-
ing from the S|mple(cond|t|(_)na_) moment approach_es to the Go( 71, 7T, 0) = Gol 71, 70 p(1, )]
full PDF approaches, require information on the time scales.

These models are mainly based on the assumption of a direct 1 p[— 77%+ 775— 2P771772}
21 - p? 2(1-p?) ’

x , 4)
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p(r,t) = (X, 1) O(x +1,1)), (5) physical space an€=3 for a three-dimensional physical
) ) ) ) space. Equatioril3) has been obtained in Reff7], where
andr is the magnitude of separation vectorThe one-point -Cp’(0,1) is represented by the varian¢& 6)?). However,

and two-point PDFs of the surrogate field can be calculateﬂ1e correlationp(r,t) in Eq. (13) still remains unknown and

as follows: has to be input externally. For example, it is set using the
aX(nt) |71 results from direct numerical simulation in R¢¥]. There-
&—7] ' (6) fore, EQ.(13) is unclosed.
The two-point correlatiom(r,t) cannot be obtained from
}—1 the one-point PDFg, (7). Rather, it has to be calculated from

fi(d’ut):gl("’])|:

9 X(171,1) 9 X(7,1)
/i /7]

the two-point statistics. Hence, we propose to invoke the
two-point correlation(9), which is not used in the classic
(7)  mapping closure approach. By differentiating K@) with

It is ideal that the surrogate field could represent bothreSpeCt td, we obtain

one-point and two-point joint PDFs,fi(,t) and afs o 9% J 9%, f300,
fo(41, ¥o,1,1), Of the scalar field. However, for the present T aul 2ot + ETAREETS = o ot (14)
purpose on time scales, the surrogate field is only required to !

represent the one-point PDF and two-point correlation The transport equation for the two-point joint PBj~can be
s derived from the test function meth¢d2,23,
f1(p) =10, (8)

f Z(l//]_; l/fz,r,t) = 92(771! 772!r1t)|:

of
&_tz +V, - [F((uy = up)| g, 4)]

f f o o Do p

= a—%[fzd“vzqol + Q)¢ )]

:J f f 50, 2,7, V) Y0 sy 9 P
oo - W[B(FVZ% + Q@) Y, )] (15
The above constraints will be used to determine the mapping 2
function X and the correlationp. Therefore, the PDF Multiplying the difference of Eqs14) and(15) by ¢; and
f 5(¢1,¥,1,1) thus obtained is an approximation to the sca-, and then taking the integration of the result with respect
lar PDFf5(ify, 2,1 ,1). to ¢4, and ¢, with substitution of Eq(9), we obtain

In the classic mapping closure approd&h7], the map- S
ping functionX is only required to represent the one-point ff (f_Z% +V, [ Uy = uy)| ¢, )] — L[f SH,]

d i

PDF of the scalar via Eqg6) and(8). Differentiating Eq.(6) gy dt
with respect ta yields P
- —[f SHy] | nbdipndif, = 0 (16)
oty o X [22)1212 ,
_1+_|: i_]zo (10) d
at gl “at

where H,=T'(V2q | ) —T(V2e@,| 4, 1,) can be also evalu-

Meanwhile, the transport equation for the one-point PDFated using the mapping functig®) and the Gaussianit§3)
f,1(i,1), can be derived by the test function methi@2,23 and (4) of the reference field [24]. Substituting Eqs(2),

as (4), and(7), into Eq.(16), we obtain the transport equation
Py p for p(r,t) as follows:
—2+ —[f(T'V?0+Q(g) )] = 0 (11) 1
: dp(r,t) IXq X
ity T"’Vr '<(U1‘U2)X1X2><(9—18_2>
Thus, comparing two Eq$10) and(11) with the substitution .72
of Egs.(2) and(8), we obtain "(r,t
q ( ) ( ) ZZF[[J"(I‘,'[) + p (r ) —Cp(l’,t)p"(o,t) +p/2(r't)
X
— =T(V20|p = X(n,1)) + ) 12
The conditional moment in Eq12) can be evaluated from Ini Iy | \dmdmn '

the mapping functiori2) and the Gaussianity8) and (4) of
the reference field [24]. As a result, the transport equation
for the mapping functiori2) becomes

Equations(13) and (17) form a closed system for the
mapping function, where E@13) describes the evolution of
the shape of the mapping function and E4j7) specifies the
aX PX aX rate at which the mapping function evolves. In ELj7), the
T -Cp"(0,0T o7 Tan +Q(X). (13 second term on the left-hand side corresponds to advection,
the first three terms on the right-hand side correspond to
It is easily shown from the Gaussianit@) and (4) that  diffusion and the last term on the right-hand side corresponds
((Ve)?»=-Cp"(0,t), where C=2 for a two-dimensional to the effect of nonlinear mapping. The last term vanishes if
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the mapping function is linear. We note thafr,t) is the 1 T ]
correlation function of the reference field and is dependent - ]
on the mapping function. 0.8 15t ]
Theu term in Eqg.(17) can be treated by the direct inter- o e 1
action or the perturbation method. The model obtained is 8 1 o IF ]
exact for the conserved scalar advected by a stochastic deco- ~ g0.6 St .
rrelated time velocity field. For lack of space, we only give © N
the result as follows: : !
0.4}
2 © [
Ve - ((Ug = UXeXo) = hiy(r, 0 ——— (X[ 00X, ), 1] >
Jd I d rj 0.2k
XX[O(x +1,1),t]), (18) i
where %01 02z _ 03 04 05
¢ t
hy(r.0) = ZL (Ui, Ouj(x, ) —u(x +1,t+5)]ds. FIG. 1. The scalar variance as a function of time for the diffu-

sion equation: the solid line is from the MCA model and the squares
(19 are from DNS. The inset shows the scalar PDFs: the solid, dashed
and dash-dotted lines are from the MCA modei=a0.05,0.15, and
0.5, respectively, and the circles, squares, and triangles are from
DNS at the corresponding times.

The model for theu term in Eq.(17) can be also obtained
using the scalar-velocity joint PDH4].
The realizability condition of Eq17) is |p(r,t)|<1. For

the pure diffusion processes with the initial Gaussian distri- o )
butions of positive correlations, the diffusion teri(r ,t) doubles distribution. The results illustrate that the MCA

+p/(r,t)/r and the damping termGp”(0,t)p(r,t) decrease models represent the relaxation of the douBlEDF to the

the amplitudes of the correlatigs(r ,t), so that the solution Gaussian PD_F not only in its shape but also at the correct
: . rate of evolutions.
of Bq. (17) is realizable. In Fig. 2, the scalar variance and dissipation rate are plot-
The mapping equatio(3) is closed using the two-point ted forg.th,e diffusion-reaction e uatiorup—o and Q(¢) P
statistics constraint9), from which the correlation equation q - @

(17) is derived. Another possibility for the closure is to use :._2_0‘P|"_°|’ with the |n|.t|al Gaussian d|_str|but|on. T.h.e scalar
the constraint of the joint PDF for the scalar and its derivrcl—d'ss'p"’ltlon rate is an important quantity for the mixing mod-

tive [7], which leads to an unclosed equation f40,t) and ?IS [ﬁg TITZPI:ASVA mzfﬂ]ar&gion']n gglre(z;nne?t V\r"th t;'tetﬁNSf
its spatial derivatives. It points to another direction to go esufts. ows € 0aels eprese ee

. : : fects of both diffusion and reactions.

beyond the one-point mappir@) for different purpose. . - .

The peromance of (e NCA model and(1)are  FUTTCOTPATSons e made i i, o e svecion
evaluated against the direct numerical simulatiddilS) of Fig. 2 wheqre the Péclet number is about 101. Evidently. the
the three basic test cases: diffusion equations, diffusionM%A ,models can predict the scalar deca rétes They, can
reaction equations, and advection-diffusion equations. Equ%'till make a qood ; roximation for the hiyher Péclet r):um-
tion (1) and the MCA modelg13) and(17) are numerically ber of ord glé it _ppd_ ical 9 lati
solved in a cyclic square of siden2 using second-order er ot order 19 attained in our numerical simufations.
Adams-Bashforth scheme in time and fourth-order central
finite-difference scheme in space. In all the cases, the nondi-
mensional molecular diffusivit"=0.01. Boundary condi-
tions are periodic in space, except that the ones in the direc- 0.8
tion of the reference field are obtained by extrapolation. The
initial fields for (1) are doubles distributions or isotropic [
Gaussian distributions with their energy spectg(k) g0.6¢
«k 713 Thus, the initial mapping for Eq13) and the initial [
correlation for Eq(17) can be calculated from their defini- ~o.4f
tions. The velocity field is a given homogeneous isotropic i
Gaussian process, decorrelated in tji28], with spectrum of > [
the form E(k) >k 3. In order to isolate the effects of the 0.2
MCA models on diffusivity and reaction, the advection term [
in Eg. (17) are calculated directly from the DNS without oL—
invoking any models. 0

Figure 1 compares the evolutions of the variance
(¢(x,1)) and the PDFf,(4,t) obtained from Eq(1) with FIG. 2. The scalar variance and dissipation ranse) as the
those from the MCA modelél3) and(17) for the diffusion  functions of time for the reaction-diffusion equation: the solid line
equation:u=0 and Q=0. The initial condition is set as a is from the MCA model and the squares are from DNS.
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determine the time-evolving correlations of the reference
fields and thus the scalar fields. Unlike usual treatments in
the Bogoliubov-Born-Green-Virkwood-Yvon hierarchgs],
where the representations are specifigatiori, the represen-
tations in the MCA hierarchy are allowed to evolve in coor-
dinate with the dynamics of scalar mixing. Especially, the
MCA models obtained are completely closed for the diffu-
sion equations, the diffusion-reaction equations and the
advection-diffusion equations of stochastic decorrelated ve-
locity fields. The results from the MCA models are in agree-
ment with the DNS results for the above three basic test
[ ] cases. The approach is under further development for more
ol o ] complex situations including multiscalar mixing and inho-
0 0.1 0.2 0.3 . . . : :

t mogeneous scalar fields, using time-evolving Gaussian or
non-Gaussian reference fields.

FIG. 3. The scalar variance as a function of time for the
advection-diffusion equation: the solid line is from the MCA model

and the squares are from DNS. The inset shows the scalar PDFs: tg(ﬁd stimulating discussions on the manuscript, G. Kosaly for

solid, dashed, and dash-dotted lines are from the MCA model at . . . .
=0,0.05, and 0.3, respectively, and the circles, squares, and trF—he dlscq55|ons on t!me scales, M Wang for h!s help on .the
angles are from DNS at the corresponding times. manuscript preparation, Y. L._ Bai, R Rubm_steln, M. F. Xia
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